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We propose a deep learning–based knockoffs inference frame-
work, DeepLINK, that guarantees the false discovery rate (FDR)
control in high-dimensional settings. DeepLINK is applicable to
a broad class of covariate distributions described by the possi-
bly nonlinear latent factor models. It consists of two major parts:
an autoencoder network for the knockoff variable construction
and a multilayer perceptron network for feature selection with
the FDR control. The empirical performance of DeepLINK is inves-
tigated through extensive simulation studies, where it is shown
to achieve FDR control in feature selection with both high selec-
tion power and high prediction accuracy. We also apply DeepLINK
to three real data applications to demonstrate its practical
utility.

false discovery rate | knockoffs | deep learning | microbiome | single-cell

The era of big data gives us enormous new opportunities but
meanwhile, also produces unprecedented challenges in solv-

ing various data-related problems. The challenges are not just
because of the large size of the data but also and even more
caused by the complexity in, for example, text, image, video, and
audio data. As a result, complicated models such as deep neu-
ral networks have been proposed and popularly used to analyze
big data. Despite the appealing high prediction and classification
power of deep neural networks, there is strong pushback from
the scientific community because of its “black box” nature. The
complicated structure of many deep neural networks has made
the interpretation and reproducibility of such models incred-
ibly difficult if even possible at all. To alleviate these issues,
dimension reduction methods such as variable selection and
latent factor models have been used in statistics and related
applications.

In the past decade, feature (variable) selection has been a cen-
tral topic in statistics (1, 2). Feature selection aims at identifying
the truly important features that contribute to the effect of some
response of interest. One desirable property of feature selec-
tion methods is that the error rate of selecting incorrect features
can be controlled at some preselected target level while achiev-
ing high power. The celebrated procedure of Benjamini and
Hochberg (3, 4) for false discovery rate (FDR) control has been
shown to enjoy such a property both theoretically and empirically
under some conditions of the P values calculated for evaluat-
ing the feature importance. Although a vast number of methods
have been proposed for feature selection with the goal of control-
ling error rate, such as the Benjamini–Yekutieli procedure (5),
local FDR (6), q value (7), the adaptive Benjamini–Hochberg
procedure (BH for short hereafter) (8), P value weighting (9),
FDR regression (10), independent hypothesis weighting (11),
adaptive shrinkage (12), adaptive P value thresholding (13), and
the structure-adaptive Benjamini–Hochberg algorithm (14), very
few can be used in complicated models such as deep neural
networks. The intrinsic difficulties are that most existing meth-
ods were proposed under much simpler model settings that are
difficult or not even possible at all to generalize or depend heav-
ily on the P values as the feature importance measure. Such

P values can be calculated based on some classical or asymp-
totic theory in simpler models. When we move away from these
simple model settings to more complicated ones such as deep
neural networks, however, we no longer have the luxury of
calculating theoretically justified P values, making feature selec-
tion highly challenging. Recently, Candès et al. (15) proposed
a new framework of model-X knockoffs for achieving the FDR
control in feature selection, bypassing the use of conventional
P values. Model-X knockoffs can be used as a wrapper by com-
bining with any feature selection methods that produce feature
importance measures satisfying certain conditions. We provide a
brief review of the model-X knockoffs in a later section. Thanks
to the flexibility of model-X knockoffs, it was recently extended
to the setting of deep neural networks in ref. 16 via propos-
ing a new network architecture, DeepPINK, when the features
have joint Gaussian distributions. The distributional assumption
of joint Gaussian limits the practical applicability of the pro-
posed method therein. In this paper, we explore more general
distributional assumptions for the feature vector and propose
a method for deep learning inference using knockoffs, named
DeepLINK.

Latent factor models, which use lower-dimensional unob-
servable factors to model the comovements of features, have
been well studied and broadly used in statistics (17–19), soci-
ology (20, 21), bioinformatics (22–24), and economics (25–29).
The most commonly used factor model assumes a linear rela-
tionship between the feature vector and latent factors. Since
in practice, we can never be certain whether the dependency
is truly linear, we are likely to face the problem of model
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Fig. 1. The autoencoder architecture. p-dim and r-dim indicate p dimen-
sions and r dimensions, respectively.

misspecification, making the statistical estimation and infer-
ence results unreliable. Recently, the advent of deep learning
has motivated the nonlinear factor models described by the
architecture of the autoencoder.

DeepLINK combines the flexible nonlinear factor modeling
power of the autoencoder with the feature selection and predic-
tion power of DeepPINK. The nonlinear factor model for the
feature vector described by the autoencoder enables us to gener-
ate the knockoff variables effectively without imposing restrictive
joint distribution assumptions (e.g., Gaussian) on features. The
feature selection and prediction power of DeepPINK allow for
interpretable and reproducible statistical inference without sac-
rificing much power. It is worth mentioning that for the special
case when both the factor model and the regression model
of response on features are linear, the problem of model-X
knockoffs inference was investigated in ref. 30 via proposing
a parametric inference framework of Intertwined Probabilis-
tic Factors Decoupling (IPAD). We demonstrate the superior
performance of DeepLINK via simulations and three real data
examples. Compared with IPAD, DeepLINK is more flexible and
more robust to model misspecification and meanwhile, achieves
comparable feature selection results with generally higher power.

Deep Learning–Based Knockoffs Inference
Variable Selection with False Discovery Rate (FDR) Control. Con-
sider the high-dimensional supervised learning with indepen-
dent and identically distributed (i.i.d.) observations (xi , yi), i =
1, . . . ,n , where xi =(xi1, . . . , xip)

T ∈Rp is the feature vector and
yi ∈R is the scalar response. The number of features p can be
comparable with or even larger than the number of observations
n . Let {1, 2, · · · , p} be the full set of all the features. Assume
that the conditional distribution of response yi depends only on
a small subset of features, and we aim to find the Markov blanket
(31) (i.e., the smallest subset S0 such that yi is independent of all
remaining features given those in S0). That is,

yi ⊥⊥{xij : j ∈Sc
0} | {xik : k ∈S0}, [1]

where Sc
0 denotes the complement of subset S0 in the full

set {1, 2, · · · , p}. The existence and uniqueness of the Markov
blanket can be guaranteed under mild conditions on the joint dis-
tribution of (xi , yi). The discussions in ref. 15 have more details.
For the ease of presentation, we refer to features in S0 as the

“true” features and those in Sc
0 as the “null” features in future

presentation.
The goal of our study is to identify true features while con-

trolling the error rate under a predetermined level. Various
performance metrics have been proposed to measure the fea-
ture selection error rate, such as the familywise error rate,
k-familywise error rate (k-FWER) (32), false discovery propor-
tion (FDP) (33), and FDR (3). Here, we adopt the widely used
FDR defined as

FDR :=E[FDP] with FDP :=

∣∣∣Ŝ ∩ Sc
0

∣∣∣
max{|Ŝ|, 1}

, [2]

where Ŝ is the set of selected features using some statistical pro-
cedure, | · | means the cardinality of a set, and the expectation is
taken with respect to the randomness in Ŝ. A modified version of
FDR (mFDR) is defined as

mFDR :=E


∣∣∣Ŝ ∩ Sc

0

∣∣∣
|Ŝ|+ q−1

, [3]

where q ∈ (0, 1) is the target FDR level. It is seen that FDR is
more conservative than mFDR since controlling the FDR nat-
urally results in the control of mFDR. We also use another
important performance measure, power, to investigate the capa-
bility of a statistical procedure in discovering the true features.
Formally speaking, power is defined as the expectation of the
true discovery proportion (TDP):

Power :=E[TDP] with TDP :=

∣∣∣Ŝ ∩ S0∣∣∣
|S0|

. [4]

A desirable inference framework should be able to control the
FDR at a prechosen target level and meanwhile, achieve high
power.

Model Settings. We focus on the setting where the high-
dimensional feature vector xi depends on some low-dimensional
latent factor vector fi ∈Rr with r� p in a potentially nonlinear
fashion. Specifically, assume the following factor structure for xi :

xi = g(fi)+ εi , i =1, · · · ,n, [5]

Fig. 2. The DeepPINK architecture. 2p-dim, p-dim, and 1-dim indicate 2p
dimensions, p dimensions, and 1 dimension, respectively.
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Table 1. Neural network parameter settings

Activation Loss Optimizer Regularization

Autoencoder
Linear h ELU MSE Adam None
Nonlinear h ELU MSE Adam None

MLP
Linear h ELU MSE Adam L1 regularization
Nonlinear h ELU MSLE Adam L1 regularization

where g is a vector-valued function whose coordinates can take
some nonlinear functional forms that are unknown to us, and
εi ∈Rp is the factor model error vector with i.i.d. components.
We make the additional assumption that the marginal distribu-
tion of the components of εi is from some parametric family fθ
with unknown parameter θ∈Rm , where m is some fixed positive
integer.

When the coordinates of g are all linear functions, model
Eq. 5 becomes the widely used latent factor model in the lit-
erature, which we will refer to as the linear factor model to
ease the presentation. Most existing works have been devel-
oped under the linear factor model assumption, which can
be restrictive in some applications. Our proposed method will
use a data-adaptive way to estimate the possibly nonlinear
function g.

We also assume that the response yi depends on xi via the
following nonparametric regression model

yi = h(xi)+ εi , i =1, · · · ,n, [6]

where h is some unknown function and can be either linear or
nonlinear and εi ’s are independent model errors. For the ease of
presentation, we will use matrix and vector notation by denoting
X=(x1, . . . , xn)T the n × p design matrix, F=(f1, . . . , fn)T the
n × r matrix of factors, and y=(y1, . . . , yn)

T the n-dimensional
response vector. Define C as an n × p matrix whose rows are
g(fi)T , i =1, . . . ,n . Then, model Eq. 5 can be rewritten as

X=C+E, [7]

where E is a matrix with the i th row being εT
i . Our goal can be

specifically stated as developing a feature selection method with
the FDR controlled at the target level q under the flexible model
settings Eqs. 5 and 6.

The Model-X Knockoffs Framework. We will adopt the recently
developed model-X knockoffs framework introduced in ref. 15
to achieve our goal of feature selection. For completeness, we
give a brief review of the model-X knockoffs framework below.
We refer the readers to ref. 15 for full details.

As discussed in the Introduction, various FDR control meth-
ods have been proposed since the seminal work of BH. Most
of these existing methods achieve the FDR control under the
assumption that valid P values can be calculated. However, hav-
ing valid P values can become a luxury in the high-dimensional
big data settings. Taking the generalized linear models as an
example, when the feature dimensionality p diverges with sample
size n at a rate of n2/3 or faster, the classical asymptotic the-
ory of maximum likelihood estimation (MLE) no longer applies.
Consequently, the resulting P values calculated using the formula
from the classical asymptotic theory become invalid. Ref. 34 has
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Fig. 3. Comparisons between DeepLINK and IPAD in simulation settings with the linear factor model. A–D represent different combinations of the link
function h, the number of features p, and the number of true signals s. FDR+ and Power+ denote the empirical FDR and power obtained using the
knockoff+ threshold. The black dashed lines indicate the target FDR level. Each plot shows the change of FDR+ (solid lines) and Power+ (long dashed line)
for DeepLINK (blue) and IPAD (orange) against varying signal amplitude A.
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formal results on such a phenomenon. When more complicated
models such as the random forests or deep neural networks are
used, how to calculate valid P values for evaluating the feature
importance is still an open question. To overcome this difficulty,
Barber and Candès (35) introduced the fixed-X knockoffs frame-
work, bypassing the use of p values to achieve the FDR control in
the Gaussian linear model when p is smaller than n/2. Recently,
Candès et al. (15) proposed the model-X knockoffs framework,
which achieves theoretically guaranteed FDR control in arbitrary
dimensions and for arbitrary dependence structure of response
y on features x. These advantages motivate us to adapt the
model-X knockoffs framework to our model settings.

The salient idea of the model-X knockoffs is to construct
the so-called “model-X knockoff variables,” which perfectly
mimic the dependence structure of the original variables but
are conditionally independent of the response. For complete-
ness, we include the definition of the model-X knockoff variables
introduced in ref. 15 as follows.

Definition: Model-X knockoff variables for a set of random
variables x=(x1, · · · , xp)T are a new set of random variables
x̃=(x̃1, · · · , x̃p)T that satisfies the following properties.

1) For any subset S ⊂{1, · · · , p}, (xT , x̃T )swap(S)

D
=(xT , x̃T ),

where (xT , x̃T )swap(S) is obtained by swapping the compo-

nents xj and x̃j in (xT , x̃T ) for each j ∈S and D= denotes equal
in distribution;

2) x̃⊥⊥ y | x.

The second property above is satisfied as long as x̃ is con-
structed without using the information of response y . To con-
struct knockoff variables that satisfy the first property, we need

to know the joint distribution of x. When such distribution is
available, ref. 15 proposed a generic algorithm Sequential Con-
ditional Independent Pairs (SCIP) for the knockoff variable
construction. When such information is unavailable, there has
been some recent work on the practical construction of knockoff
variables (for example, refs. 30 and 36–40).

Denote by x̃i the vector of knockoff variables for xi , i =

1, . . . ,n , and let X̃=(x̃1, · · · , x̃n)T . For each j =1, . . . , p, let
Wj be the knockoff statistic defined for measuring the impor-
tance of the j th original feature. Specifically, Wj is a function of
the augmented data matrix [X, X̃] and the response vector y [i.e.,
Wj =wj ([X, X̃], y), with wj a function satisfying the “sign-flip”
property]:

wj ([X, X̃]swap(S), y)=

{
wj ([X, X̃], y), j /∈S ,
−wj ([X, X̃], y), j ∈S ,

[8]

where S can be any subset of {1, · · · , p}. The formal charac-
terizations of the desired knockoff statistics as well as examples
are in ref. 15. Intuitively, valid knockoff statistics measure the
importance of original features, with large positive ones indicat-
ing the original features being important, and for unimportant
features in Sc , the corresponding Wj ’s are expected to have
small magnitudes and be symmetric around zero.

Finally, the set of important features is selected as Ŝ =
{j :Wj ≥ t} with t =T or t =T+, where T is the knockoff
threshold and T+ is the knockoff+ threshold as proposed in ref.
15 and included below for completeness:

T =min

{
t > 0 :

|{j :Wj 6−t}|
max{|{j :Wj > t}|, 1} 6 q

}
, [9]
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Fig. 4. Simulation results of DeepLINK in settings with the additive quadratic factor model. A–D represent different combinations of the link function h, the
number of features p, and the number of true signals s. FDR+ and Power+ denote the empirical FDR and power obtained using the knockoff+ threshold.
The black dashed lines indicate the target FDR level. Each plot shows the change of FDR+ (solid line) and Power+ (long dashed line) against varying signal
amplitude A.
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T+ =min

{
t > 0 :

1+ |{j :Wj 6−t}|
max{|{j :Wj > t}|, 1} 6 q

}
. [10]

Here, Ŝ is defined as an empty set if T =∞ or T+ =∞.
It has been formally shown in ref. 15 that the knockoff thresh-

old controls the mFDR exactly and the knockoff+ threshold
controls the FDR exactly at the finite-sample level, regardless
of the sample size n , feature dimensionality p, and dependence
structure of response y on features x.

DeepLINK. We next introduce our framework of DeepLINK, a
deep learning–based statistical inference framework using knock-
offs. It consists of two parts: 1) an autoencoder network for the
knockoff variable construction and 2) a multilayer perceptron
(MLP) network for feature selection with the FDR control.

As reviewed in the last section, there are two key ingredi-
ents in the successful implementation of the model-X knockoffs
framework: 1) the construction of knockoff variables and 2)
the construction of knockoff statistics. Since the joint distribu-
tion of xi is unknown to us, the generic algorithm proposed in
ref. 15 is no longer applicable to our settings. A remedy is to
exploit the nonlinear factor model structure in Eq. 5 to construct
approximate knockoff variables using the estimated distribution.

In view of Eq. 7, ideally if the realization C and the marginal
distribution fθ of εi are both known a priori, then the knockoff
variables can be constructed as

X̃=C+ Ẽ, [11]

with the entries of Ẽ independently drawn from distribution fθ .
It can be easily checked that such X̃ satisfies the two properties
in Definition. Since C and fθ are generally unknown in practice,

we next discuss methods to estimate them. We will also discuss
the construction of knockoff statistics.
Part 1: Autoencoder for knockoffs construction. The principal
component analysis (PCA) has been a predominant method for
extracting latent factors in the existing literature (41, 42). How-
ever, a key assumption for PCA to work well is that xi depends
on fi linearly. To address the challenge caused by the potentially
nonlinear factor model as specified in Eq. 5, we propose to use
the deep learning model of autoencoder.

Given the design matrix X, we train an autoencoder with X as
the input as well as the target output. An illustrative plot of the
autoencoder network is shown in Fig. 1. Denote by Ĉ the cor-
responding autoencoder output matrix. We propose to construct
the knockoffs data matrix as

X̃= Ĉ+ Ẽ, [12]

where Ẽ is a matrix with entries independently sampled from the
estimated marginal distribution fθ̂ of εi . For the specific case
when fθ is the Gaussian density of N (0,σ2), we have θ=σ2,
which can be estimated as σ̂2 =(np)−1∑

1≤i≤n,1≤j≤p ê
2
ij with

êij ’s the entries of the residual matrix Ê=X− Ĉ. This corre-
sponds to the maximum likelihood estimate with the pseudo-
observations Ê. In general, parameter θ can be estimated by the
maximum likelihood approach or the method of moments based
on Ê.
Part 2: MLP for feature selection. To construct the knockoff
statistics, we need to first construct the feature importance
measure. Since an important goal of our framework is to accom-
modate the flexible nonlinear relationship between response y
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Fig. 5. Simulation results of DeepLINK in settings with the logistic factor model. A–D represent different combinations of the link function h, the number
of features p, and the number of true signals s. FDR+ and Power+ denote the empirical FDR and power obtained using the knockoff+ threshold. The
black dashed lines indicate the target FDR level. Each plot shows the change of FDR+ (solid line) and Power+ (long dashed line) against varying signal
amplitude A.
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and features x, we propose to use the MLP for such modeling
purpose. The input of MLP is the augmented data matrix [X, X̃].
Instead of directly feeding the augmented feature vector into the
MLP, we exploit the idea of DeepPINK developed in ref. 16 and
construct a pairwise-connected filter layer with each filter rep-
resenting a linear combination of one original feature and its
knockoff counterpart. The filter layer is then fed to the canon-
ical MLP. The illustrative architecture of DeepPINK is shown in
Fig. 2.

To simplify the notation, we use DeepPINK with one hid-
den layer after the filter layer to discuss the construction of the
knockoff statistics. Let z=(z1, · · · , zp)T and z̃=(z̃1, · · · , z̃p)T

be the filter weights (i.e., each filter Fj = zj xj + z̃j x̃j ) and W(1) ∈
Rp×m , W(2) ∈Rm×1 be the two weight matrices connecting the
filter layer with the output layer, where m is the number of
neurons before the output layer. The knockoff statistics are
defined as

Wj =Z 2
j − Z̃ 2

j , j =1, · · · , p, [13]

where Zj = zjwj , Z̃j = z̃jwj , and w=(w1, · · · ,wp)
T =W(1)W(2).

This can be easily generalized to cases with more than one hidden
layer. Since the weights of neurons are natural measures of their
importance, intuitively Wj ’s defined in Eq. 13 are valid knockoff
statistics. Ref. 16 has more detailed discussions on the intuition
of Wj in Eq. 13. Important features can then be selected using
the knockoffs inference procedure reviewed previously.

Simulation Studies
We first evaluate the performance of DeepLINK on the sim-
ulated datasets. We consider various simulation settings when

1) the factor model is linear or nonlinear, 2) the link function
between the response and the features is linear or nonlinear, and
3) the feature dimensionality is low or high. The computational
cost of DeepLINK is presented in SI Appendix, section 1.

Simulation Designs. We explore three different factor models: the
linear factor model (Eq. 14), the additive quadratic factor model
(Eq. 15), and the logistic factor model (Eq. 16), where for i =
1, . . . ,n ,

xi =Λfi + εi , [14]

xi =Λ[fTi , (f
2
i )

T , fi1fi2, fi1fi3, fi2fi3]
T + εi , [15]

xij =
cj

1+ exp([1, fTi ]λj )
+ εij , j =1, · · · , p. [16]

Here, fi =(fi1, fi2, fi3)
T is the vector of latent factors, f2i is

the shorthand notation for (f 2i1, f
2
i2, f

2
i3)

T , Λ and λj are the
factor loading parameters of appropriate dimensions, and cj ’s
are some constants. The fij , cj , λij , and entries of Λ and
εi are all sampled independently from the standard normal
distribution N (0, 1).

The response vector y=(y1, · · · , yn)T is simulated from
model Eq. 6. We investigate two different forms of the link
function h—the linear design (Eq. 17) and the nonlinear
design (Eq. 18):

h(x)= xTβ, [17]

h(x)= sin (xTβ) exp (xTβ). [18]

To simulate the coefficient vector β=(β1, · · · ,βp)T , we first
randomly choose s true signal locations and then set the βj at

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

3 6 9 12 15 18 21 24
signal amplitude A

F
D

R
+

P
ow

er+

linear h , p=500, s=10A

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

3 6 9 12 15 18 21 24
signal amplitude A

F
D

R
+

P
ow

er+

linear h , p=1500, s=30B

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

3 6 9 12 15 18 21 24
signal amplitude A

F
D

R
+

P
ow

er+

nonlinear h , p=50, s=10C

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

3 6 9 12 15 18 21 24
signal amplitude A

F
D

R
+

P
ow

er+

nonlinear h , p=500, s=10D

Activations

ELU−ELU

ELU−ReLU

ELU−Tanh

ReLU−ELU

ReLU−ReLU

ReLU−Tanh

Tanh−ELU

Tanh−ReLU

Tanh−Tanh

Measure

FDR+

Power+

Fig. 6. Linear factor model simulation results of DeepLINK using different activation functions. A–D represent different combinations of the link function
h, the number of features p, and the number of true signals s. FDR+ and Power+ denote the empirical FDR and power obtained using the knockoff+
threshold. The black dashed lines indicate the target FDR level. Each plot shows the change of FDR+ (solid lines) and Power+ (long dashed lines) against
varying signal amplitude A for different activation functions (ELU, ReLU, and Tanh) used in autoencoder and DeepPINK (e.g., ReLU-ELU represents using
ReLU in autoencoder and ELU in DeepPINK).
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each location to be A or −A with equal probability, where A
is some positive value that varies in our simulation studies. The
remaining p− s components of β are set to zero. It is seen that
when the link function h is linear, A measures the signal strength
with a larger value corresponding to a stronger signal. When h is
nonlinear, however, the signal strength may no longer be a mono-
tone increasing function of A. The discussions in SI Appendix,
section 2 have an example illustrating this. In fact, to the best
of our knowledge, there lacks a widely adopted measure for the
signal strength in the nonlinear model settings. Model errors
εis are also sampled independently from the standard normal
distribution N (0, 1).

Parameter Settings. For all the simulation studies, the target
FDR q is set to 0.2, and the sample size n is set to 1,000. For
the linear link function setting, we explore two different feature
dimensionalities p=500, 1,500 with true signal size s set to 10
and 30, respectively. For the nonlinear link function setting, p is
set to 50 and 500, and s is fixed at 10. We vary the value of A to
investigate its impact on the performance of DeepLINK.

Neural Network Settings. We next provide the details on the neu-
ral network architectures. We train the autoencoder network
using the Adam algorithm with the mean squared error (MSE)
as the loss function. For the linear factor model, the number of
neurons in the autoencoder’s bottleneck layer is estimated by
the PCp1 algorithm proposed in ref. 43. It is worth noting that
PCp1 is designed for linear factor models. For the nonlinear fac-
tor models, we set it to the true number of factors r =3. We
conduct a robustness study of DeepLINK to the misspecification
of r in SI Appendix, section 3. We remark that r can be tuned

by the cross-validation in real applications. For DeepPINK used
in the feature selection step, we use MSE as the loss function
coupled with the L1 regularization when the link function h is
linear. When the link function is nonlinear, we change the loss
function to the mean squared logarithmic error (MSLE) because
MSE may cause explosive gradients for large response values. In
fact, MSLE also works well with other nonlinear link functions
(SI Appendix, section 4). For a general guidance, we suggest using
MSE first and switching to MSLE when the gradients become too
large during the model training. For both linear and nonlinear
link functions, we use the Adam optimizer to train the network.
For both autoencoder and DeepPINK networks, we recommend
to use the exponential linear unit (ELU) as the activation func-
tion according to our experience gained from empirical studies.
Our numerical study also suggests that the learning rate of Adam
and the coefficient of L1 regularization need to be tuned for the
best performance of our method. The neural network settings
are summarized in Table 1.

Simulation Results. We investigate the performance of
DeepLINK in the simulation study with different combinations
of factor models, link functions, and dimensionalities. For each
setting, we apply DeepLINK to 100 independently simulated
datasets and calculate the average FDP and TDP as the empiri-
cal FDR and power, respectively. The knockoff+ threshold is
used in our numerical studies because it controls the exact FDR.
Simulation results with the linear factor model. We compare
DeepLINK with IPAD reviewed in the Introduction using the
simulated data in the linear factor model setting as speci-
fied in Eq. 14. Both methods successfully control the FDR
under the target level 0.2. In terms of power, IPAD slightly
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Fig. 7. Additive quadratic factor model simulation results of DeepLINK using different activation functions. A–D represent different combinations of the
link function h, the number of features p, and the number of true signals s. FDR+ and Power+ denote the empirical FDR and power obtained using the
knockoff+ threshold. The black dashed lines indicate the target FDR level. Each plot shows the change of FDR+ (solid lines) and Power+ (long dashed lines)
against varying signal amplitude A for different activation functions (ELU, ReLU, and Tanh) used in autoencoder and DeepPINK (e.g., ReLU-ELU represents
using ReLU in autoencoder and ELU in DeepPINK).
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Fig. 8. Logistic factor model simulation results of DeepLINK using different activation functions. A–D represent different combinations of the link function
h, the number of features p, and the number of true signals s. FDR+ and Power+ denote the empirical FDR and power obtained using the knockoff+
threshold. The black dashed lines indicate the target FDR level. Each plot shows the change of FDR+ (solid lines) and Power+ (long dashed lines) against
varying signal amplitude A for different activation functions (ELU, ReLU, and Tanh) used in autoencoder and DeepPINK (e.g., ReLU-ELU represents using
ReLU in autoencoder and ELU in DeepPINK).

outperforms DeepLINK in settings with the linear link func-
tion (Fig. 3 A and B). This is reasonable because IPAD was
proposed under the assumption of the linear factor model and
linear link function and makes full use of these parametric
model structures, while DeepLINK makes no use of these model
structures at all. For the nonlinear link function (Fig. 3 C
and D), however, the power of IPAD drops significantly, while
DeepLINK still maintains decently high power. It is also inter-
esting to observe that the power of DeepLINK first increases
sharply to the peak and then decreases slightly as A increases,
which can be explained by the fact that A no longer serves as a
good measure of the signal strength. These results demonstrate
the versatility of DeepLINK. The capability of DeepLINK to
tackle complicated nonlinear link functions makes it more use-
ful in real applications since it is more robust to possible model
misspecification.

Another interesting observation is that our simulation pro-
duces highly correlated features. To study DeepLINK’s ability
to disentangle important features from their highly correlated
noise features, we conducted additional analyses in SI Appendix,
section 5.
Simulation results with the nonlinear factor model. We now con-
sider nonlinear factor models Eqs. 15 and 16. We will drop IPAD
from the comparison because IPAD was proposed under the
assumption of linear factor model and is not expected to perform
well when the model is severely misspecified.∗ For the additive

*The performance of IPAD is already very poor when the link function h alone takes a
nonlinear form, as shown in Fig. 3 C and D.

quadratic factor model in Eq. 15, FDR is perfectly controlled
in all settings. Meanwhile, high power is achieved with reason-
ably large A in the two settings with linear link function (Fig. 4 A
and B). However, the two settings with nonlinear link functions
are very challenging, and the power of DeepLINK is significantly
lower (Fig. 4 C and D). For the logistic factor model Eq. 16,
DeepLINK controls the FDR and can achieve power close to
one with a wide range of values for A in each setting (Fig. 5). The
success of FDR control by DeepLINK in nonlinear factor model
settings provides evidence that the autoencoder network can well
capture the nonlinear factor structure and thus, generates valid
knockoffs data matrices. Similar to the linear factor model set-
ting, we again observe an inverted U-shaped curve of the power
when the link function is nonlinear, which can be explained by
the same reason as before.
Robustness of DeepLINK to different activation functions. We
explore the effects of different activation functions used in the
autoencoder and DeepPINK networks on the performance of
DeepLINK (Figs. 6–8). In general, DeepLINK is robust to dif-
ferent combinations of activation functions in terms of both FDR

Table 2. Mean and SE (in parentheses) of the misclassification
error rates for the microbiome dataset

Training Test

d = 20 0.172 (0.003) 0.319 (0.008)
d = 30 0.104 (0.004) 0.306 (0.007)
d = 40 0.019 (0.003) 0.328 (0.009)
d = 50 0.008 (0.002) 0.319 (0.008)
d = 100 0.000 (0.000) 0.385 (0.012)
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Table 3. Top 20 most selected microbial species when d = 30 for
the microbiome dataset

Species Frequency

D. pneumosintes 99
Eikenella corrodens 96
Staphylococcus haemolyticus 75
Intestinimonas butyriciproducens 75
B. fragilis 70
Latilactobacillus sakei 58
Clostridium bornimense 58
P. micra 51
A. muciniphila 49
Gemella sp. oral taxon 928 48
Clostridium chauvoei 45
Corynebacterium sp. NML98-0116 43
Prevotella intermedia 34
Streptococcus sp. A12 31
Ndongobacter massiliensis 30
Ruminococcus bicirculans 29
Lactococcus garvieae 28
Fusobacterium varium 26
Anaerococcus mediterraneensis 26
Desulfovibrio fairfieldensis 23

control and power. The only exception is using the rectified linear
unit (ReLU) activation in the autoencoder network. In the linear
factor model setting with linear link function h and low feature
dimensionality, the autoencoder with ReLU activation fails to
control the FDR when the signal amplitude is small (Fig. 6A).
We also observe that the autoencoder with ReLU activation has
slightly inflated FDR in some other settings (Figs. 7 A and D and
8A). In the linear and additive quadratic factor model settings
with linear link function h and large feature dimensionality (Figs.
6B and 7B), ReLU yields lower power than other activation
functions when used in the autoencoder network. We thus rec-
ommend against using the ReLU activation in the autoencoder
network for the DeepLINK applications.

Real Data Applications
We further apply DeepLINK to three real data applica-
tions. All predictors in the three datasets below were stan-
dardized to unit variance before the analysis. In all real
data applications, the error distribution fθ was fitted assum-
ing Gaussian distribution. The robustness of DeepLINK with
respect to misspecified error distribution is investigated in SI
Appendix, section 6. We also compare the performance of
DeepLINK with that of random forests (44, 45) in SI Appendix,
section 7.

Application to a Microbiome Dataset. The microbiome dataset is
publicly available in a colorectal cancer (CRC)–related metage-
nomic study in Zeller et al. (46). The dataset contains the
whole genome–sequenced (WGS) DNAs from stool samples of
184 individuals (91 CRC patients and 93 healthy controls). We
aligned the DNA sequences against the National Center for
Biotechnology Information (NCBI) microbial reference genome
database and constructed an abundance matrix according to the
alignment results. The matrix consisted of 184 rows and 434
columns, with each entry representing the abundance of a micro-
bial species in the corresponding sample. We randomly split the
dataset into the training set (80%) and the test set (20%) and
implemented the DeepLINK on the training part. The trained
model was then applied to the test data, and the classifica-
tion error rate was calculated. The random splitting procedure
was repeated 100 times. However, the mean misclassification
error on the test data was consistently around 0.5 under vari-

ous parameter settings of DeepLINK, suggesting that the simple
application of DeepLINK could fail. We also tried some other
popular classification methods such as the Lasso and simple deep
neural network without the special architecture as in DeepLINK,
all of which gave us error rates between 0.4 and 0.5, similar to the
random guessing.

Consequently, we performed a variable screening step first and
then applied the DeepLINK method on the screened dataset.
Considering the relatively small sample size and to reduce the
chance of including noise confounders, we identified an inde-
pendent microbiome dataset for screening. This independent
dataset was also publicly available and was collected for CRC–
microbiome association analysis (47). It contained 128 WGS
DNA samples with 74 CRC patients and 54 controls. Since these
two microbiome datasets had different numbers of features, we
constrained ourselves to the 274 common features in our anal-
ysis. There are multiple options for the screening step (2, 48,
49). We adopted one of the state-of-the-art methods, which was
based on the distance correlation, and ranked these 274 vari-
ables by the values of the asymptotic test statistics (50, 51). We
randomly split the Zeller et al. (46) CRC microbiome data into
the training and test sets at the ratio of 80 to 20%. The justifica-
tion for the training/testing set split ratio is given in SI Appendix,
section 8. Then, we trained the DeepLINK model using the top-
ranked variables with the training data. To evaluate the impact
of the number of retained variables after the screening step,
denoted as d , we examined multiple values of d . Finally, we
applied the trained DeepLINK model onto the training and test
datasets and calculated the corresponding classification error
rates. The whole process was repeated 100 times. We set the
number of neurons in the bottleneck layer of the autoencoder to
three. We chose the other model parameters by cross-validation.
The MLP in DeepPINK had only one hidden layer with d neu-
rons. The dropout rate was 0.4, while L1- and L2-regularization
weights were both 0.001. The mean and SE of the misclassifi-
cation error on the training and test data are given in Table 2.
We can see that the mean test error was the lowest when 30
variables were retained after the screening step. However, as d
increased to as large as 100, the mean test error became relatively
high (0.385), indicating that when DeepLINK lost the help of
the screening step in eliminating noise variables, its performance
could be compromised.

The top 20 most selected microbial species along with their
selection frequencies by DeepLINK coupled with screening are
presented in Table 3. We only present the results for d =30
when the mean classification error rate was the lowest. Many
of these selected species were reported to have important asso-
ciations with CRC in the previous literature. For example,
Parvimonas micra and Akkermansia muciniphila were among the
four-bacteria biomarker panel of CRC identified by Osman et
al. (52). In addition, P. micra’s enrichment in CRC was demon-
strated in a number of previous studies (47, 53–55), and Purcell
et al. (56) also reported its enrichment in one of the CRC

Table 4. Mean and SE (in parentheses) of the misclassification
error rates for the murine scRNA-seq dataset

Training Test

d = 20 0.000 (0.000) 0.021 (0.003)
d = 30 0.000 (0.000) 0.018 (0.002)
d = 40 0.000 (0.000) 0.012 (0.002)
d = 50 0.000 (0.000) 0.014 (0.002)
d = 100 0.000 (0.000) 0.016 (0.002)
d = 200 0.000 (0.000) 0.010 (0.001)
d = 300 0.000 (0.000) 0.013 (0.002)
d = 400 0.000 (0.000) 0.012 (0.002)
d = 500 0.000 (0.000) 0.015 (0.002)
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Table 5. Top 20 most selected genes when d = 200 for the
murine scRNA-seq dataset

Gene Frequency Gene Frequency

Sqstm1 73 Gm26825 61
Cdkn1a 66 Hsp90aa1 60
Sdc4 65 Tnfaip2 60
Abcg1 64 Clec4e 58
Rab31 64 Gpx1 58
Gm28875 64 Sod2 57
Gmnn 63 Srsf5 55
Angpt2 63 Fas 51
Ehd4 61 Get1 50
Dnaja1 61 Hsp90ab1 50

subtypes. Other important CRC-related species that were also
reported in previous studies include Dialister pneumosintes (57)
and Bacteroides fragilis (58–61).

Application to a Murine Single-Cell RNA-Sequencing Dataset. The
murine single-cell RNA-sequencing (scRNA-seq) dataset is pub-
licly available from Lane et al. (62), aiming to investigate the
effect of lipopolysaccharides (LPS)-stimulated nuclear factor-κB
(NF-κB) on gene expression. We first preprocessed the data fol-
lowing the suggestions in ref. 63. We filtered out cells either
with mapping rate below 20% or with nonzero expression pro-
portion below 5%. We also filtered out genes expressed in less
than 5% of total cells. The preprocessed data matrix contained
the expression, in the form of transcripts per million (TPM), of
13,777 genes from 570 cells. We were interested in differential
gene expression between cells with two conditions: unstimulated
(202 cells) and stimulated with LPS after 150 min (368 cells).
Due to the high dimensionality, it was computationally infeasi-
ble to implement the DeepLINK on this dataset directly, even
with powerful servers. The success of screening in the previous
microbiome example motivated us to apply a screening step first
to reduce the dimensionality. Since this dataset had a relatively
larger sample size than the microbiome dataset, we randomly
split the dataset into three parts for screening (50%), training
(40%), and test (10%), instead of using an independent dataset
for screening. We used the same model architecture and parame-
ters tuned from the previous microbiome analysis. The mean and
SE of the misclassification error over 100 repetitions on the train-
ing and test sets, respectively, for this scRNA-seq dataset are
provided in Table 4. We observe that the mean misclassification
error on the test data can get as low as 0.010 when d =200.

We further looked at the top 20 most selected genes by
DeepLINK equipped with screening for d =200 as presented
in Table 5. Many of the selected genes were also reported as
significant features in the original study (62) including Sqstm1,
Sdc4, Abcg1, Rab31, Gmnn, Angpt2, Hsp90aa1, Tnfaip2, Clec4e,
Gpx1, Sod2, and Fas. Gene Ontology (GO) analysis with domain
Biological Process (BP) indicates that the up-regulation of
genes in LPS-stimulated cells is related to NF-κB signaling
(Sqstm1) and LPS response (Sod2). Also, Hsp90aa1 can bind
LPS and mediate LPS-induced inflammatory response accord-
ing to Uniprot (64), which may be related to its up-regulation in
LPS-stimulated cells.

Application to a Human Single-Cell RNA-Sequencing Dataset.
Another scRNA-seq dataset that we investigated is from a
human glioblastoma study led by Darmanis et al. (65). We were
interested in differential gene expression between Neoplastic
cells in the tumor core and the surrounding periphery. We used
the same criteria as in the murine scRNA-seq study to preprocess
the data, which resulted in a dataset with TPMs of 23,257 genes
from 632 cells (580 in the tumor core and 52 in the periphery).

Again, due to the high dimensionality, we first conducted dimen-
sionality reduction using the distance correlation screening and
then applied DeepLINK. The model architecture and parame-
ters were the same as those in the last two real data studies. We
repeated the experiment 100 times and present the mean and
SE of the misclassification error on the training and test data,
respectively, in Table 6. We see that the mean misclassification
errors on the test data achieve the smallest value when d =200
and then become more or less stable.

The top 20 most selected genes by DeepLINK equipped with
screening for d =200 are shown in Table 7. We next exam-
ined the biological meaning of these selected genes. As pointed
out in the original study (65), down-regulation of genes like
ATP1A2 and PRODH in the periphery might be related to their
functions in the interstitial matrix invasion. We also observed
that HIF3A was down-regulated in the tumor core, which was
probably associated with the hypoxia in core. Previous study
also demonstrated that HIF3A was a dominant-negative reg-
ulator of HIF-1 and was thus down-regulated in a hypoxic
environment (66). GO analysis with domain BP indicates that
some genes up-regulated in periphery have functions related
to cell migration from periphery to core. For instance, HES6
has GO term nervous system development, which is highly rel-
evant to tumor cell migration. IGSF21 and CNTN1 have GO
term cell–cell adhesion, which is a central part in cell migra-
tion. ALDOC has GO term glycolytic process, which produces
a small amount of adenosine triphosphate (ATP) and may help
the cell migration as an energy provider. SERPINE2 has GO
term regulation of cell migration. Also, genes such as SPARCL1,
NPL, and ST6GALNAC3 are involved in various metabolic
processes.

Discussion
In this paper, we have developed a high-dimensional infer-
ence framework via knockoffs, DeepLINK, to enhance the
interpretability and reproducibility of deep learning models.
DeepLINK generates the knockoff variables under the possibly
nonlinear factor model assumption using an autoencoder net-
work and then fits the regression/classification model using the
DeepPINK network. We have used various simulated datasets to
numerically demonstrate that DeepLINK can achieve success-
ful FDR control with attractive power in selecting features that
are truly important for the response of interest. We have also
showcased the practical utility and performance of DeepLINK
on three real data applications.

When comparing the prediction performance of DeepLINK
with random forests in SI Appendix, section 7, we noticed that
random forests can outperform DeepLINK in terms of predic-
tion for the microbiome dataset. This is likely caused by the
distinctive prediction power of MLP and random forests. We
remark that the MLP in the second step of DeepLINK can
be replaced with random forests if one suspects that the latter
can outperform in prediction. We also emphasize that the main

Table 6. Mean and SE (in parentheses) of the misclassification
error for the human scRNA-seq dataset

Training Test

d = 20 0.006 (0.001) 0.072 (0.003)
d = 30 0.002 (0.000) 0.068 (0.003)
d = 40 0.001 (0.000) 0.064 (0.003)
d = 50 0.001 (0.000) 0.060 (0.003)
d = 100 0.001 (0.000) 0.059 (0.003)
d = 200 0.000 (0.000) 0.046 (0.003)
d = 300 0.000 (0.000) 0.056 (0.003)
d = 400 0.000 (0.000) 0.049 (0.003)
d = 500 0.000 (0.000) 0.050 (0.003)
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Table 7. Top 20 most selected genes when d = 200 for the
human scRNA-seq dataset

Gene Frequency Gene Frequency

ATP1A2 73 ANKRD20A9P 45
PRODH 73 HIF3A 44
HES6 62 NPL 44
IGSF21 57 AC131097.1 44
PPM1K 56 FAM240C 41
ALDOC 55 ST6GALNAC3 40
SPARCL1 55 MMP28 40
SERPINE2 52 CNTN1 39
RNPC3 52 MTRNR2L1 39
LOC102724788 47 EFHD1 38

purpose of DeepLINK is feature selection with controlled error
rate, and to achieve the goal of FDR control in feature selec-
tion, the prediction power may be slightly compromised in some
applications.

There are five potential directions for future investigations.
First, in the real data applications, we consider binary out-
comes. DeepLINK can be easily extended to the case of multiple
classes if we replace the loss function in the second step of
binary cross-entropy with multiclass cross-entropy. Second, the
knockoff variable-generating process of DeepLINK simulates
the idiosyncratic matrix E outside of the autoencoder network
with nondeep learning techniques. Designing a new deep neural
network, which can automate the knockoff variable-generating
process, may increase its efficiency and accuracy. Third, we cur-
rently have two separate networks in DeepLINK: the knockoff

variable-generating network of autoencoder and the model fit-
ting and inference network of DeepPINK. We would like to
integrate them into one single network for a joint optimiza-
tion so that the whole process can be fully automated. Such a
feature can make DeepLINK even more user friendly. Fourth,
heterogeneity in the samples is a practically important issue.
It is possible that the samples consist of multiple subpopula-
tions and that they have different true features. It is likely that
DeepLINK can be extended to accommodate the heterogene-
ity. The key is to construct valid knockoff variables reflecting the
subpopulation information. One naive method is to construct
knockoff variables for each subpopulation and then combine
them appropriately to form valid knockoff variables for the
overall population. If this can be achieved, the second step of
feature selection using MLP can be applied without modifica-
tion. Finally, we would like to provide theoretical justifications
on DeepLINK in terms of both FDR control and power. This
can in turn guide the training of the underlying networks and fur-
ther improve the interpretation of our deep learning inference
method.

Data Availability. Software data have been deposited in GitHub
(https://github.com/zifanzhu/DeepLINK). Preprocessed data
matrices for the four publicly available data sets can be
downloaded with the corresponding link: Zeller microbiome
(67), Yu microbiome (68), murine scRNA-seq (69), and human
scRNA-seq (70).
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